Dysregulation of low-density lipoprotein receptor contributes to podocyte injuries in diabetic nephropathy.
نویسندگان
چکیده
Dyslipidemia plays crucial roles in the progression of diabetic nephropathy (DN). This study investigated the effects of high glucose on lipid accumulation in podocytes and explored its underlying mechanisms. Male db/m and db/db mice were fed a normal chow diet for 8 wk. Immortalised mouse podocytes were treated with or without high glucose for 24 h. The changes to the morphology and ultramicrostructures of the kidneys in mice were examined using pathological staining and electron microscopy. Intracellular lipid accumulation was evaluated by Oil Red O staining and a free cholesterol quantitative assay. The expressions of the molecules involved in low-density lipoprotein receptor (LDLr) pathway and podocyte injury were examined using immunofluorescent staining, real-time PCR, and Western blot. There were increased levels of plasma lipid, serum creatinine, and proteinuria in db/db mice compared with db/m mice. Moreover, there was significant mesangial matrix expansion, basement membrane thickening, podocyte foot process effacement, and phenotypic alteration in the db/db group. Additionally, lipid accumulation in the kidneys of db/db mice was increased due to increased protein expressions of LDLr, sterol regulatory element-binding protein (SREBP) cleavage-activating protein, and SREBP-2. These effects were further confirmed by in vitro studies. Interestingly, the treatment with LDLr siRNA inhibited lipid accumulation in podocytes and decreased the protein expression of molecules associated with phenotypic alteration in podocytes. High glucose disrupted LDLr feedback regulation in podocytes, which may cause intracellular lipid accumulation and alteration of podocyte phenotype, thereby accelerating DN progression.
منابع مشابه
Chronic Aerobic Exercise Decreases Lectin-Like Low Density Lipoprotein (LOX-1) Receptor Expression in Heart of Diabetic Rat
Background: Overexpression of lectin-like low density lipoprotein (LOX-1) receptor plays an important role in hyperglycemia-induced vascular complications such as atherosclerosis. Based on the beneficial effects of exercise on preventing cardiovascular complications of diabetes, we aimed to examine the protective effects of aerobic exercise on expression of LOX-1 receptor and production of free...
متن کاملCholesterol Contributes to Diabetic Nephropathy through SCAP-SREBP-2 Pathway
Diabetic nephropathy (DN) has been associated with the presence of lipid deposition. We hypothesized that the disruption of intracellular cholesterol feedback may contribute to DN. Diabetes was induced by high fat/sucrose diet and low-dose intraperitoneal injection of streptozocin (STZ) in male Sprague-Dawley rats. Then diabetic rats were randomly divided into two groups: untreated diabetic gro...
متن کاملLipoprotein Modification: A Hallmark in the Progression of Diabetic Nephropathy
Diabetic Nephropathy (DNP) is a chronic disease caused by diabetes that leads to end stage renal diseases. Although various pathological mechanisms have been proposed till date on the progression of DNP, the exact cause of this disease is still unknown. Here, we have focused on the modifications of low density lipoproteins (LDL) and its pathogenicity in DNP. LDL modification, specifically oxida...
متن کاملTherapeutic Potential of a Monoclonal Antibody Blocking the Wnt Pathway in Diabetic Retinopathy
Dysregulation of Wnt/β-catenin signaling contributes to the development of diabetic retinopathy by inducing retinal inflammation, vascular leakage, and neovascularization. Here, we evaluated the inhibitory effect of a monoclonal antibody (Mab) specific for the E1E2 domain of Wnt coreceptor low-density lipoprotein receptor-related protein 6, Mab2F1, on canonical Wnt signaling and its therapeutic...
متن کاملThe podocyte as a direct target for treatment of glomerular disease?
The Centers for Disease Control and Prevention estimates more than 10% of adults in the United States, over 20 million Americans, have chronic kidney disease (CKD). A failure to maintain the glomerular filtration barrier directly contributes to the onset of CKD. The visceral epithelial cells, podocytes, are integral to the maintenance of this renal filtration barrier. Direct podocyte injury con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 308 12 شماره
صفحات -
تاریخ انتشار 2015